Posts Tagged ‘PBL’

PBL survey shows strong scientific consensus that global warming is largely driven by greenhouse gases

August 4, 2015

Updates:

(5 Sep 2015): US Presidential candidate Rick Santorum used an erroneous interpretation of our survey results on the Bill Maher show. My  detailed response to Santorum’s claim is in a newer blogpost. Politifact and Factcheck also chimed in and found Santorum’s claims to be false. The blogpost below goes into detail about how different interpretations could lead to different conclusions and how some interpretations are better supported than others.

As Michael Tobis rightly points out, the level of scientific consensus that you find “depends crucially on who you include as a scientist, what question you are asking, and how you go about asking it”. And on how you interpret the data. We argued that our survey results show a strong scientific consensus that global warming is predominantly caused by anthropogenic greenhouse gases. Others beg to differ. Recent differences of opinion are rooted in different interpretations of the data. Our interpretation is based on how we went about asking certain questions and what the responses indicate.

To quantify the level of agreement with a certain position, it makes most sense to look at the number of people as a fraction of those who answered the question. We asked respondents two questions about attribution of global warming (Q1 asking for a quantitative estimate and Q3 asking for a qualitative estimate; the complete set of survey questions is available here). However, as we wrote in the ES&T paper:

Undetermined responses (unknown, I do not know, other) were much more prevalent for Q1 (22%) than for Q3 (4%); presumably because the quantitative question (Q1) was considered more difficult to answer. This explanation was confirmed by the open comments under Q1 given by those with an undetermined answer: 100 out of 129 comments (78%) mentioned that this was a difficult question.

There are two ways of expressing the level of consensus, based on these data: as a fraction of the total number of respondents (including undetermined responses), or as a fraction of the number of respondents who gave a quantitative or qualitative judgment (excluding undetermined answers). The former estimate cannot exceed 78% based on Q1, since 22% of respondents gave an undetermined answer. A ratio expressed this way gives the appearance of a lower level of agreement. However, this is a consequence of the question being difficult to answer, due to the level of precision in the answer options, rather than it being a sign of less agreement.

Moreover, the results in terms of level of agreement based on Q1 and Q3 are mutually consistent with each other if the undetermined responses are omitted in calculating the ratio; they differ markedly when undetermined responses are included. In the supporting information we provided a table (reproduced below) with results for the level of agreement calculated either as a fraction of the total (i.e., including the undetermined answers) or as a fraction of those who expressed an opinion (i.e., excluding the undetermined answers), specified for different subgroups.

Verheggen et al - EST 2014 - Table S3

For the reasons outlined above we consider the results excluding the undetermined responses the most meaningful estimate of the actual level of agreement among our respondents. Indeed, in our abstract we wrote:

90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming.

This is the average of the two subgroups with the highest number of self-reported publications for both Q1 and Q3. In our paper we discussed both ways of quantifying the level of consensus, including the 66% number as advocated by Tom Fuller (despite his claims that we didn’t).

Fabius Maximus goes further down still, claiming that the level of agreement with IPCC AR5 based on our survey results is only 43-47%. This result is based on the number of respondents who answered Q1b, asking for the confidence level associated with warming being predominantly greenhouse gas-driven, as a fraction of the total number of respondents who filled out Q1a (whether with a quantitative or an undetermined answer). As Tom Curtis notes, Fab Max erroneously compared our statement to the “extremely likely” statement in AR5, whereas in terms of greenhouse gases AR5 in Chapter 10 considered it “very likely” that they are responsible for more than half the warming. Moreover, our survey was undertaken in 2012, long before AR5 was available, so if respondents had IPCC in mind as a reference, it would have been AR4. If anything, the survey respondents were by and large more confident than IPCC that warming had been predominantly greenhouse gas driven, with over half assigning a higher likelihood than IPCC did in both AR4 and AR5.

PBL background report - Q1b

Let me expand on the point of including or excluding the undetermined answers with a thought experiment. Imagine that we had asked whether respondents agreed with the AR4 statement on attribution, yes or no. I am confident that the resulting fraction of yes-responses would (far) exceed 66%. We chose instead to ask a more detailed question, and add other answer options for those who felt unwilling or unable to provide a quantitative answer. On the other hand, imagine if we had respondents choose whether the greenhouse gas contribution was -200, -199, …-2, -1, 0, 1, 2, … 99, 100, 101, …200% of the observed warming. The question would have been very difficult to answer to that level of precision. Perhaps only a handful would have ventured a guess and the vast majority would have picked one of the undetermined answer options (“I don’t know”, “unknown”, “other”). Should we in that case have concluded that the level of consensus is only a meagre few percentage points? I think not, since the result would be a direct consequence of the answer options being perceived as too difficult to meaningfully choose from.

Calculating the level of agreement in the way we suggest, i.e. excluding undetermined responses, provides a more robust measure as it’s relatively independent of the perceived difficulty of having to choose between specific answer options. And, as is omitted by the various critics, it is consistent with the responses to the qualitative attribution question, which also provides a clear indication of a strong consensus. If you were to insist on including undetermined responses in calculating the level of agreement, then it’s best to only use results from Q3. Tom Fuller’s 66% becomes 83% in that case (the level of consensus for all respondents), showing the lack of robustness in this approach when applied to Q1.

Verheggen et al - Figure 1 - GHG contribution to global warming

Some other issues that came up in recent discussions:

See also the basic summary of our survey findings and the accompanying FAQ.

 

Responses to the Climate Science Survey

April 12, 2015

Appeared in similar form on the PBL website

In the Spring of 2012, the Netherlands Environmental Assessment Agency PBL held a survey among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The main results of the survey were published in an article in Environmental Science and Technology (ES&T) in August 2014: “Scientists’ views about attribution of global warming”. It showed that there is widespread agreement regarding a dominant influence of anthropogenic greenhouse gases on recent global warming. This agreement is stronger among respondents with more peer-reviewed publications.

A background report with the results for all 31 questions has now been made available. The total number of responses for each answer option is provided and a subdivision into seven groups for five questions. The background report contains previously unpublished data. Some highlights are provided below.

Climate sensitivity

Respondents were asked for their opinion regarding the best estimate and likely range for equilibrium climate sensitivity (ECS). This is an important quantity for projections of global warming, as it gives the expected warming that would follow from a doubling in atmospheric CO2 concentration after the climate system has equilibrated to the new conditions. Thus, expected warming in the future depends on the combination of total emissions and climate sensitivity.

The figure below gives the average estimates of ECS from 7 groups of respondents, including authors of the Working Group I report of the fourth IPCC Assesment Report (AR4), respondents who signed public declarations critical of mainstream climate science as embodied by IPCC (‘unconvinced’), and four different subgroups distinguished according to their self-declared number of climate related peer-reviewed publications (0–3; 4–10; 11–30; more than 30). Results from most groups were very close to the IPCC range (1.5-4.5 °C) mentioned in the fifth assessment report (AR5) – except those tagged as ‘unconvinced’ which strongly deviated from the other groups, and to a lesser extent the group of respondents with three or less publications. For all subgroups the ‘best estimate’ was slightly lower than the ‘best estimate’ reported in AR4 (i.e. 3 °C). AR5 provided no best estimate.

Scientists views on climate sensitivity - PBL

Role of climate science in society

Respondents were also asked their opinion about seven statements regarding the role of climate science in society and how the science should be communicated. There was a strong consensus that scientists themselves should communicate with both policymakers and the general public about climate change and that communication with the general public should focus on solid knowledge. To a lesser extent there was agreement that risks and uncertainties should be emphasised during such communication. Responses varied more strongly about whether or not existing uncertainties in climate science strengthen the case for mitigation (i.e. to avoid potential low probability, high impact events). There was (strong) disagreement with the statement that climate science would be too uncertain to be useful for policymaking on climate change.

Scientists views on role of science in society - PBL

The role of the sun in global warming

In the public debate about climate change the role of the sun is often put forward as an alternative explanation for global warming. Question 17 asked what fraction of recent global warming could be attributed to the sun. Those tagged as ‘unconvinced’ had the lowest fraction of respondents that indicated that they don’t know (together with AR4 authors) and the highest fraction that said that the role of the sun is unknown. As expected they also had by far the highest fraction (27%) that believed that the sun caused more than half of recent global warming.

As with the attribution questions (see the ES&T article), there appears to be a trend in responses going from the group with fewest publications to those with most. The more publications about climate change respondents report to have written, the larger fraction of them agree with the IPCC position that the sun hardly played a role in recent global warming, since the solar output decreased slightly over that period.

Scientists views on the role of the sun in global warming - PBL

More information:

PS: I’ll have a poster presentation about the survey at the EGU conference this week, in session EOS6 “Communication and Education in Geoscience” on Thursday evening.

Climate researcher Bart Strengers wins wager with climate sceptic Hans Labohm

January 23, 2015

Guestpost by Bart Strengers. Originally appeared as a news item on the PBL website.

Late 2009, in the run-up to the international climate conference in Copenhagen, PBL climate researcher Bart Strengers had an online discussion with climate sceptic Hans Labohm on the website of the Dutch news station NOS (in Dutch). This discussion, which was later also published as a PBL report, ended in a wager. Strengers wagered that the mean global temperature over the 2010–2014 period would be higher than the mean over 2000 to 2009. Hans Labohm believed there would be no warming and perhaps even a cooling; for example due to reduced solar activity.

At the request of Labohm, it was decided to use the UAH satellite temperature data set on the lower troposphere (TLT) (roughly the lowest 5 km of the atmosphere). These data sets are compiled by the University of Alabama in Huntsville. Satellites are used to measure radiation in the atmosphere, after which the temperature of the various layers of the atmosphere is derived using a complex algorithm.

According to the UAH today, temperatures appear to have been an average 0.1 °C warmer over the past five years than over the 10 years before that. Thus, Strengers has won the wager. The stakes: a good bottle of wine.

PBL temp comp Eng - 0040_001g_adhoc
The UAH temperature series since 1979 (no satellites were available for the period before then). The green lines represent the mean over periods of 10 years. The purple line on the far right is the mean over the 2010–2014 period.
UAH satellite data series shows the greatest warming

Precisely these UAH data, incidentally, show by far the most warming. The 4 other main global temperature series also show warming over the last 5 years, but one that is markedly lower (between 0.03 and 0.05 °C).

What causes the differences between the data series?

The table below shows the global warming, in °C, over the past 5 years, compared to the 10 years before that, for the five main global temperature series: the satellite series of the University of Alabama in Huntsville (UAH) and of the Remote Sensing Systems (RSS), and the surface temperature series of NASA, Climate Research Unit (CRU) and the National Climatic Data Centre (NCDC). CRU’s series are based on surface temperature measurements up to and including November 2014, as data on December were not yet available.

The large difference (by more than a factor of 3!) between the UAH and RSS satellite series is remarkable (also see the graph below). According to the UAH team, in which two well-known climate sceptics are involved, the difference is mainly caused by the fact that RSS partly bases its series on an old satellite (NOAA-15) with an increasingly lower orbit around the earth. This causes an error in measurements that is insufficiently corrected by RSS. All in all, it is a technical and complex issue, which possibly causes the differences, but it mainly shows how complicated the procedure is for determining global temperatures on the basis of satellite measurements. The three surface measurement series provide a much more consistent image of between 0.04 °C and 0.05 °C warming.

Satellite temperature measurements difficult to compare with surface measurements

In addition, it is important to note that satellite and surface measurements are difficult to compare. This is due to the fact that satellite series are based on the temperature of the entire lower troposphere (the lowest 5 km of the atmosphere). The temperature of this atmospheric layer is, for example, much more sensitive to El Niños than surface temperatures are. This is illustrated in the graph below by the relatively high peak for the two satellite series at the time of the super El Niño in 1997–1998 and the less strong El Niño of 2010. The reverse is the case for La Niñas, such as the strong one of 2008; here, satellite series typically show a lower temperature.

PBL - temp comp - 0040_002g_adhoc
Temperatures according to 2 satellite series (UAH and RSS). The purple line indicates the mean of the three surface temperature series. The satellite series show peaks in 1998 and 2010, as a result of El Niño, which are greater than those in the surface temperature series. The low satellite value for 2008 coincides with the opposite of an El Niño: La Niña. Note how the last 4 years in the RSS series are far below those in the other series. According to the surface temperature measurements, 2014 was the warmest year on record!

The graph shows that the last years in the RSS series clearly deviate from the other temperature series, with lower values of over 0.1 °C. This suggests that RSS rather than UAH is too low (as also claimed by the UAH team). The outcome of this discussion may lead to adjustments to one or both satellite series, as has been done in the past, particularly to the UAH series, on numerous occasions.

The surface temperature series further indicate that 2014 was the warmest year on record, even without an El Niño!

Contribution by cooling and warming influences.

Strengers indicated at the time that ‘in light of the scientific uncertainties, I may lose, but this is not likely to happen’. He gave four reasons why a possible reduction in warming, or even a cooling could occur. Bold indicates that the related reason more or less became a reality over the past 5 years.

  • a continued (relatively) low solar activity;
  • a relatively high heat absorption by the (deep) oceans;
  • a period of cooling due to incidental variations in the climate;
  • lower climate sensitivity than expected.

In addition, Strengers gave three reasons why he nevertheless expected to win:

  • a further increase in greenhouse gas concentrations in the atmosphere;
  • the ‘best-estimate’ by the IPCC is that of a warming of 0.2 °C per decade;
  • the chances of overestimating climate sensitivity are smaller than those of underestimation.

The sum of all factors, thus, has led to continued warming. Below each of these factors is explained in more detail.

Continued (relatively) low solar activity

Over the past 5 years, the reduced solar activity has continued and, thus, likely also has slightly reduced global warming over that period. In the discussion at the time, Strengers wrote: ‘astrophysics […] cannot rule out the possibility of a long period of relatively low activity. This could lead to a reduction in warming of up to 0.4 °C (although 0.2 °C is more likely) over the coming 20 to 30 years.’ The past 5 years, therefore, are in keeping with the idea that such a period of relatively low activity is a fact, but the degree to which this reduction will actually continue over the coming years, or for how long it will go on, is still very uncertain.

Relatively high heat absorption by the (deep) oceans

Over 90% of the heat that is added to the climate system, particularly caused by the increase in greenhouse gases, ends up in the oceans. Only a few per cent is stored in the atmosphere. The remainder is absorbed by the land surface and ice sheets (which are therefore steadily melting). Variations in heat absorption can have a large impact on surface temperatures. According to a recent study by England et al., published in December 2013 in Nature, there has been increased heat absorption by the oceans since 2001, which since then has reduced warming by 0.1 to 0.2 °C. The added heat seem to be concentrated largely around the equator in the western part of the Pacific Ocean, at a depth of around 125 to 200 metres, which means it remains ‘hidden’ from the atmosphere. England and his team do not expect this heat storage effect to continue in this way and they project that, at a certain moment, temperatures at the surface level will begin to increase more rapidly. This could happen, for example, due to an El Niño with large amounts of heat being released suddenly, possibly causing temperatures to jump, as happened in 1997–1998 during the so-called super El Niño. Over the past months, a new El Niño seems to be developing. If this continues into 2015, this year may end up being even warmer than the record year of 2014.

A period of cooling due to incidental variations in the climate

The climate knows random variations. Strengers wrote that these may lead to longer periods of no warming or even cooling, even under a steady increase in greenhouse gas concentrations in the atmosphere. During the discussions, Strengers pointed to a study which shows on the basis of climate models that periods of up to 16 years of random cooling or non-warming may occur, even in an overall warming climate. Recent research shows that a combination of random factors likely has led to a reduction in temperature increases over the past 15 years (see the section below, ‘IPCC’s ‘best-estimate’ is that of a warming of 0.2 °C per decade’, for more details). However, this reduction in warming was not high enough for the past 5 years to be cooler than the decade before that.

Lower climate sensitivity than expected

The IPCC – the scientific body that inventories all knowledge on climate change every 5 to 7 years –stated in 2007 in its fourth assessment report (AR4) that climate sensitivity was likely (i.e. with a likelihood of 66%) between 2.0 and 4.5 °C, with a ‘best estimate’ of 3 °C. The fifth assessment report (2013) stated a range of 1.5 to 4.5 °C without giving a ‘best estimate’. The reason for the downward adjustment of the lower limit to 1.5 °C (at which it had been estimated since 1990) originated from a number of studies that pointed to the possibility of a low climate sensitivity. The ‘best estimate’ was not provided “because of a lack of agreement on values across assessed lines of evidence and studies” (i.e. based on all studies up to and including July 2012). All this, however, does not mean that climate sensitivity was ‘less than expected’. In fact, the only thing that can be concluded is that the value of climate sensitivity has become more uncertain.

Further increase in greenhouse gas concentrations in the atmosphere

Greenhouse gas concentrations in the atmosphere have steadily increased over the past 5 years. By late 2014, CO2 concentrations were at 399 ppm (399 molecules of CO2 per million molecules of air). Five years ago this level was 388 ppm. The increase is a direct result from an ever faster increase in CO2 emissions, particularly in countries such as India and China.

IPCC’s ‘best-estimate’ is that of a warming of around 0.2 °C per decade

At the time of IPCC’s fourth assessment report, in 2007, a global warming of 0.2 °C was assumed for the current decade (2010–2019), particularly on the basis of climate model results. As discussed above, the degree of warming according to the UAH series, which is based on satellite measurements, was 0.1 °C over the last 5 years, compared to the mean of the 10 years before that. If this trend continues over the coming 5 years, our current decade will register a warming of around 0.15 °C – slightly less than the ‘best estimate’, but well within the projected range by the IPCC. However, all surface temperature series show a lower degree of warming, between 0.04 and 0.05 °C, over the past 5 years (see the section on ‘What causes the differences between the data series?’). Extrapolation over the 2010–2019 decade shows a total maximum warming of 0.08 °C [typo fixed]. This is in line with the discussion on the ´hiatus´ or the finding that the rate of warming over the past 15 years has been lower than in the 20 years before that, and also lower than the average outcome of many climate models. Note though that there is no significant change in trend from 1998. If climate model calculations take into account the ´random factors´ that cannot be predicted, such as the occurrence of El Niños, solar activity, and volcano eruptions, then models and observations seem much more in agreement.

The chances of overestimating climate sensitivity are smaller than those of underestimation

The IPPC’s fifth assessment report (2013) states that climate sensitivity is likely (66% probability) to be between 1.5 and 4.5 °C. It subsequently states that it is extremely unlikely (less than 5% probability) to be smaller than 1, and very unlikely (less than 10% probability) to be higher than 6.  In other words, very low values are less likely than very high values, which substantiates the above statement.

[Note: hyperlinks added by Bart Verheggen]

Survey confirms scientific consensus on human-caused global warming

August 11, 2014
  • A survey among more than 1800 climate scientists confirms that there is widespread agreement that global warming is predominantly caused by human greenhouse gases.
  • This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature.
  • The main attribution statement in IPCC AR4 may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols.
  • Self-reported media exposure is higher for those who are skeptical of a significant human influence on climate.

In 2012, while temporarily based at the Netherlands Environmental Assessment Agency (PBL), my colleagues and I conducted a detailed survey about climate science. More than 1800 international scientists studying various aspects of climate change, including e.g. climate physics, climate impacts and mitigation, responded to the questionnaire. The main results of the survey have now been published in Environmental Science and Technology (doi: 10.1021/es501998e).

Level of consensus regarding attribution

The answers to the survey showed a wide variety of opinions, but it was clear that a large majority of climate scientists agree that anthropogenic greenhouse gases are the dominant cause of global warming. Consistent with other research, we found that the consensus is strongest for scientists with more relevant expertise and for scientists with more peer-reviewed publications. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases (GHG) are the dominant driver of recent global warming. This is based on two different questions, of which one was phrased in similar terms as the quintessential attribution statement in IPCC AR4 (stating that more than half of the observed warming since the 1950s is very likely caused by GHG).

Verheggen et al - Figure 1 - GHG contribution to global warming


Figure 1. The more publications the respondents report to have written, the more important they consider the contribution of greenhouse gases to global warming. Responses are shown as a percentage of the number of respondents (N) in each subgroup, segregated according to self-reported number of peer-reviewed publications.

Literature analyses (e.g. Cook et al., 2013; Oreskes et al., 2004) generally find a stronger consensus than opinion surveys such as ours. This is related to the stronger consensus among highly published – and arguably the most expert – climate scientists. The strength of literature surveys lies in the fact that they sample the prime locus of scientific evidence and thus they provide the most direct measure of the consilience of evidence. On the other hand, opinion surveys such as ours can achieve much more specificity about what exactly is agreed upon and where the disagreement lies. As such, these two methods for quantifying scientific consensus are complementary. Our questions possibly set a higher bar for what’s considered the consensus position than some other studies. Furthermore, contrarian viewpoints were likely overrepresented in our study compared with others.

No matter how you slice it, scientists overwhelmingly agree that recent global warming is to a great extent human caused.

(more…)

Climate Science Survey – the questions

October 8, 2012

In the spring of 2012, a large scale climate science survey was held amongst 6500 scientists studying various aspects of global warming. The survey was spearheaded by the Netherlands Environmental Assessment Agency (PBL), where I was responsible for the execution and analysis during the first half of 2012.

The objective of this study is to gain insight into how climate scientists perceive the public debate on the physical scientific aspects of climate change. More info about the survey was posted on the PBL website at the time, which has recently been updated to include a link to the survey questionnaire. Please note that the survey is no longer active.

Some confusion has arisen over the status of this survey. I responded at WUWT in an attempt to clarify:

We undertook a survey in March/April of this year (which, as Hans Labohm mentioned in a comment on WUWT, had been previewed by a variety of people with different viewpoints). Some respondents, e.g. Timothy Ball, asked to see the questions again. After internal consultation, we decided to publish the survey questions on the institute’s website, so that they are viewable to all. We contacted the survey respondents to inform them of the questions being available to view. I informed Dr Ball of this as well, to follow-up on my earlier email to him.

Our email to all respondents, informing them of the fact that the survey questions are available on the web, was apparently misunderstood to mean that we were again soliciting responses to a survey; this is however not the case. Roger Pielke Sr had already put a notice about the survey on his blog, which he has since updated after an email clarifying that this is an inactive survey, to which he had previously responded.

Below we (Bart Verheggen and Bart Strengers) reply to some of the more substantive questions regarding the survey questions raised on WUWT. However, we will not discuss results or the survey sample at this point in time. We will do so when our manuscript has been accepted.

(more…)

PBL checkt het vierde IPCC rapport (AR4 wg2): Commentaar van de media verschilt nogal

July 6, 2010

Het Planbureau voor de Leefomgeving (PBL) heeft het vierde IPCC rapport (AR4 wg2) gecheckt op fouten en onvolkomenheden. Alleen het onderdeel over de regionale effecten van klimaatverandering (een onderdeel van werkgroep 2) is onder de loupe genomen. Dat behelst dus niet de globale effecten en ook niet de vraag hoe en waarom het klimaat veranderd.

Persbericht:

Hoofdconclusies VN-klimaatpanel over regionale gevolgen klimaatverandering overeind

Samenvatting van het rapport:

Het Planbureau voor de Leefomgeving (PBL) heeft, op verzoek van de minister van Milieu, de wetenschappelijke basis onderzocht van de belangrijkste conclusies die het IPCC in het Vierde Klimaatrapport van 2007 trekt ten aanzien van de mogelijke regionale gevolgenvan klimaatverandering. Deze conclusies zijn over het algemeen goed onderbouwd en bevatten geen enkele significante fout. De bijdrage van Werkgroep II aan het Vierde Klimaatrapport bevat ruimschoots bewijs dat regionale gevolgen van klimaatveranderingal worden waargenomen; de inschatting is dat deze gevolgen in de meeste delen van de wereld tot aanzienlijke risico’s kunnen leiden als de temperatuur verder stijgt. In sommige gevallen had de onderbouwing van de conclusies echter transparanter behoren te zijn. Hoewel expertbeoordelingen essentieel zijn in wetenschappelijke assessments, beveelt hetPBL aan om de transparantie van deze beoordelingen in toekomstige IPCC-rapporten te verbeteren. Bovendien zijn de onderzochte conclusies in hoge mate een selectie vande belangrijkste negatieve gevolgen van klimaatverandering. Hoewel deze selectie voor het Vierde Klimaatrapport was goedgekeurd door de lidstaten van het IPCC, adviseert het PBL om in het Vijfde Klimaatrapport het volledige spectrum van regionale gevolgen met de bijbehorende onzekerheden in de samenvattingen te vermelden. Om fouten en tekortkomingen zo veel mogelijk te voorkomen moet het IPCC meer gaan investeren in de kwaliteitscontrole.

De volgende aanbevelingen worden gedaan (uit de presentatie):

– Maak onderbouwing conclusies transparanter
– Geef volledig spectrum van regionale gevolgen weer
– Investeer meer in de kwaliteitscontrole
– Investeer meer in kennisopbouw

Het tweede punt raakt aan de kritiek dat werkgroep 2 de negatieve effecten meer in de schijnwerpers zet dan eventuele positieve effecten. Daar zegt het PBL rapport het volgende over:

Vierde AssessmentIPCC had focus op waarschijnlijke negatieve gevolgen

Deze ‘risicogerichte benadering’ is op zich goed te verdedigen:

– Politiek wil attent worden gemaakt op mogelijke bedreigingen en ontregelingen

– Samenleving prima in staat op positieve veranderingen te reageren, maar beleidsreactie is vaak vereist bij negatieve gevolgen

– Positieve en negatieve gevolgen kan je niet optellen

Maar kan nu beter op twee manieren worden aangevuld:

1. Geef ook rol van andere factoren dan klimaat aan, alsmede eventuele positieve effecten

2. Geef ook ‘worst case’ risico’s aan – kleine of onbekende kansen, grote gevolgen

Dit leidt tot een gebalanceerder overzicht van de regionale gevolgen voor water, voedsel, gezondheid, kustgebieden en ecosystemen

In combinatie met de eerste aanbeveling is het inderdaad belangrijk om transparant en expliciet te zijn over de gemaakte keuzes (bijv. een ‘risicogerichte benadering’) en de redenen daarvoor.

Enkele reacties van de media, waaruit aardig blijkt hoe verschillend de reactie op eenzelfde document kan zijn:

Telegraaf:

PBL kritiseert conclusies klimaatpanel

Financieel Dagblad:

Conclusies VN over klimaat overeind

En daar tussen in de Volkskrant:

Klimaatrapport kon wel wat beter;
Belangrijkste conclusies van klimaatpanel VN blijven overeind

Wel jammer dat veel media (inclusief het NOS journaal van 5 juli) niet heel duidelijk maken dat het alleen om de regionale hoofdstukken uit werkgroep 2 (klimaateffecten) gaat.

Update: Deze quote uit de volkskrant is (waarschijnlijk onbedoeld) cynisch:

De conclusie van het Planbureau is een optimistische. (…) Snelle opwarming door het broeikaseffect leidt wereldwijd tot problemen, vaak voor miljoenen mensen.

Huh? Wat een rare definitie van optimistisch… Tussen die twee zinnen, gemarkeerd door (…), staat de uitleg:

De centrale inzichten van het IPCC blijven overeind.

Oh, dus dat wordt er tegenwoordig onder optimistisch verstaan!

Assessing an IPCC assessment. An analysis of statements on projected regional impacts in the 2007 report

July 5, 2010

PBL Netherlands Environmental Assessment Agency has found no errors that would undermine the main conclusions in the 2007 report of the Intergovernmental Panel on Climate Change (IPCC) on possible future regional impacts of climate change. However, in some instances the foundations for the summary statements should have been made more transparent. The PBL believes that the IPCC should invest more in quality control in order to prevent mistakes and shortcomings, to the extent possible.

And from the presentation slides, regarding the focus of this assessment:

Media reported on errors in regional chapters of the Working Group II Report (impacts. adaptation, and vulnerability to climate change)
􀂃
Investigation focused on 8 regional chapters in Working Group II Report, and on carry-over in summary of the IPCC Synthesis Report
􀂃
Reports Working Groups I and III not investigated

Media reported on errors in regional chapters of the Working Group II Report (impacts. adaptation, and vulnerability to climate change)􀂃Investigation focused on 8 regional chapters in Working Group II Report, and on carry-over in summary of the IPCC Synthesis Report􀂃Reports Working Groups I and III not investigated