Archive for the ‘English’ Category

Responses to the Climate Science Survey

April 12, 2015

Appeared in similar form on the PBL website

In the Spring of 2012, the Netherlands Environmental Assessment Agency PBL held a survey among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The main results of the survey were published in an article in Environmental Science and Technology (ES&T) in August 2014: “Scientists’ views about attribution of global warming”. It showed that there is widespread agreement regarding a dominant influence of anthropogenic greenhouse gases on recent global warming. This agreement is stronger among respondents with more peer-reviewed publications.

A background report with the results for all 31 questions has now been made available. The total number of responses for each answer option is provided and a subdivision into seven groups for five questions. The background report contains previously unpublished data. Some highlights are provided below.

Climate sensitivity

Respondents were asked for their opinion regarding the best estimate and likely range for equilibrium climate sensitivity (ECS). This is an important quantity for projections of global warming, as it gives the expected warming that would follow from a doubling in atmospheric CO2 concentration after the climate system has equilibrated to the new conditions. Thus, expected warming in the future depends on the combination of total emissions and climate sensitivity.

The figure below gives the average estimates of ECS from 7 groups of respondents, including authors of the Working Group I report of the fourth IPCC Assesment Report (AR4), respondents who signed public declarations critical of mainstream climate science as embodied by IPCC (‘unconvinced’), and four different subgroups distinguished according to their self-declared number of climate related peer-reviewed publications (0–3; 4–10; 11–30; more than 30). Results from most groups were very close to the IPCC range (1.5-4.5 °C) mentioned in the fifth assessment report (AR5) – except those tagged as ‘unconvinced’ which strongly deviated from the other groups, and to a lesser extent the group of respondents with three or less publications. For all subgroups the ‘best estimate’ was slightly lower than the ‘best estimate’ reported in AR4 (i.e. 3 °C). AR5 provided no best estimate.

Scientists views on climate sensitivity - PBL

Role of climate science in society

Respondents were also asked their opinion about seven statements regarding the role of climate science in society and how the science should be communicated. There was a strong consensus that scientists themselves should communicate with both policymakers and the general public about climate change and that communication with the general public should focus on solid knowledge. To a lesser extent there was agreement that risks and uncertainties should be emphasised during such communication. Responses varied more strongly about whether or not existing uncertainties in climate science strengthen the case for mitigation (i.e. to avoid potential low probability, high impact events). There was (strong) disagreement with the statement that climate science would be too uncertain to be useful for policymaking on climate change.

Scientists views on role of science in society - PBL

The role of the sun in global warming

In the public debate about climate change the role of the sun is often put forward as an alternative explanation for global warming. Question 17 asked what fraction of recent global warming could be attributed to the sun. Those tagged as ‘unconvinced’ had the lowest fraction of respondents that indicated that they don’t know (together with AR4 authors) and the highest fraction that said that the role of the sun is unknown. As expected they also had by far the highest fraction (27%) that believed that the sun caused more than half of recent global warming.

As with the attribution questions (see the ES&T article), there appears to be a trend in responses going from the group with fewest publications to those with most. The more publications about climate change respondents report to have written, the larger fraction of them agree with the IPCC position that the sun hardly played a role in recent global warming, since the solar output decreased slightly over that period.

Scientists views on the role of the sun in global warming - PBL

More information:

PS: I’ll have a poster presentation about the survey at the EGU conference this week, in session EOS6 “Communication and Education in Geoscience” on Thursday evening.

Climate researcher Bart Strengers wins wager with climate sceptic Hans Labohm

January 23, 2015

Guestpost by Bart Strengers. Originally appeared as a news item on the PBL website.

Late 2009, in the run-up to the international climate conference in Copenhagen, PBL climate researcher Bart Strengers had an online discussion with climate sceptic Hans Labohm on the website of the Dutch news station NOS (in Dutch). This discussion, which was later also published as a PBL report, ended in a wager. Strengers wagered that the mean global temperature over the 2010–2014 period would be higher than the mean over 2000 to 2009. Hans Labohm believed there would be no warming and perhaps even a cooling; for example due to reduced solar activity.

At the request of Labohm, it was decided to use the UAH satellite temperature data set on the lower troposphere (TLT) (roughly the lowest 5 km of the atmosphere). These data sets are compiled by the University of Alabama in Huntsville. Satellites are used to measure radiation in the atmosphere, after which the temperature of the various layers of the atmosphere is derived using a complex algorithm.

According to the UAH today, temperatures appear to have been an average 0.1 °C warmer over the past five years than over the 10 years before that. Thus, Strengers has won the wager. The stakes: a good bottle of wine.

PBL temp comp Eng - 0040_001g_adhoc
The UAH temperature series since 1979 (no satellites were available for the period before then). The green lines represent the mean over periods of 10 years. The purple line on the far right is the mean over the 2010–2014 period.
UAH satellite data series shows the greatest warming

Precisely these UAH data, incidentally, show by far the most warming. The 4 other main global temperature series also show warming over the last 5 years, but one that is markedly lower (between 0.03 and 0.05 °C).

What causes the differences between the data series?

The table below shows the global warming, in °C, over the past 5 years, compared to the 10 years before that, for the five main global temperature series: the satellite series of the University of Alabama in Huntsville (UAH) and of the Remote Sensing Systems (RSS), and the surface temperature series of NASA, Climate Research Unit (CRU) and the National Climatic Data Centre (NCDC). CRU’s series are based on surface temperature measurements up to and including November 2014, as data on December were not yet available.

The large difference (by more than a factor of 3!) between the UAH and RSS satellite series is remarkable (also see the graph below). According to the UAH team, in which two well-known climate sceptics are involved, the difference is mainly caused by the fact that RSS partly bases its series on an old satellite (NOAA-15) with an increasingly lower orbit around the earth. This causes an error in measurements that is insufficiently corrected by RSS. All in all, it is a technical and complex issue, which possibly causes the differences, but it mainly shows how complicated the procedure is for determining global temperatures on the basis of satellite measurements. The three surface measurement series provide a much more consistent image of between 0.04 °C and 0.05 °C warming.

Satellite temperature measurements difficult to compare with surface measurements

In addition, it is important to note that satellite and surface measurements are difficult to compare. This is due to the fact that satellite series are based on the temperature of the entire lower troposphere (the lowest 5 km of the atmosphere). The temperature of this atmospheric layer is, for example, much more sensitive to El Niños than surface temperatures are. This is illustrated in the graph below by the relatively high peak for the two satellite series at the time of the super El Niño in 1997–1998 and the less strong El Niño of 2010. The reverse is the case for La Niñas, such as the strong one of 2008; here, satellite series typically show a lower temperature.

PBL - temp comp - 0040_002g_adhoc
Temperatures according to 2 satellite series (UAH and RSS). The purple line indicates the mean of the three surface temperature series. The satellite series show peaks in 1998 and 2010, as a result of El Niño, which are greater than those in the surface temperature series. The low satellite value for 2008 coincides with the opposite of an El Niño: La Niña. Note how the last 4 years in the RSS series are far below those in the other series. According to the surface temperature measurements, 2014 was the warmest year on record!

The graph shows that the last years in the RSS series clearly deviate from the other temperature series, with lower values of over 0.1 °C. This suggests that RSS rather than UAH is too low (as also claimed by the UAH team). The outcome of this discussion may lead to adjustments to one or both satellite series, as has been done in the past, particularly to the UAH series, on numerous occasions.

The surface temperature series further indicate that 2014 was the warmest year on record, even without an El Niño!

Contribution by cooling and warming influences.

Strengers indicated at the time that ‘in light of the scientific uncertainties, I may lose, but this is not likely to happen’. He gave four reasons why a possible reduction in warming, or even a cooling could occur. Bold indicates that the related reason more or less became a reality over the past 5 years.

  • a continued (relatively) low solar activity;
  • a relatively high heat absorption by the (deep) oceans;
  • a period of cooling due to incidental variations in the climate;
  • lower climate sensitivity than expected.

In addition, Strengers gave three reasons why he nevertheless expected to win:

  • a further increase in greenhouse gas concentrations in the atmosphere;
  • the ‘best-estimate’ by the IPCC is that of a warming of 0.2 °C per decade;
  • the chances of overestimating climate sensitivity are smaller than those of underestimation.

The sum of all factors, thus, has led to continued warming. Below each of these factors is explained in more detail.

Continued (relatively) low solar activity

Over the past 5 years, the reduced solar activity has continued and, thus, likely also has slightly reduced global warming over that period. In the discussion at the time, Strengers wrote: ‘astrophysics […] cannot rule out the possibility of a long period of relatively low activity. This could lead to a reduction in warming of up to 0.4 °C (although 0.2 °C is more likely) over the coming 20 to 30 years.’ The past 5 years, therefore, are in keeping with the idea that such a period of relatively low activity is a fact, but the degree to which this reduction will actually continue over the coming years, or for how long it will go on, is still very uncertain.

Relatively high heat absorption by the (deep) oceans

Over 90% of the heat that is added to the climate system, particularly caused by the increase in greenhouse gases, ends up in the oceans. Only a few per cent is stored in the atmosphere. The remainder is absorbed by the land surface and ice sheets (which are therefore steadily melting). Variations in heat absorption can have a large impact on surface temperatures. According to a recent study by England et al., published in December 2013 in Nature, there has been increased heat absorption by the oceans since 2001, which since then has reduced warming by 0.1 to 0.2 °C. The added heat seem to be concentrated largely around the equator in the western part of the Pacific Ocean, at a depth of around 125 to 200 metres, which means it remains ‘hidden’ from the atmosphere. England and his team do not expect this heat storage effect to continue in this way and they project that, at a certain moment, temperatures at the surface level will begin to increase more rapidly. This could happen, for example, due to an El Niño with large amounts of heat being released suddenly, possibly causing temperatures to jump, as happened in 1997–1998 during the so-called super El Niño. Over the past months, a new El Niño seems to be developing. If this continues into 2015, this year may end up being even warmer than the record year of 2014.

A period of cooling due to incidental variations in the climate

The climate knows random variations. Strengers wrote that these may lead to longer periods of no warming or even cooling, even under a steady increase in greenhouse gas concentrations in the atmosphere. During the discussions, Strengers pointed to a study which shows on the basis of climate models that periods of up to 16 years of random cooling or non-warming may occur, even in an overall warming climate. Recent research shows that a combination of random factors likely has led to a reduction in temperature increases over the past 15 years (see the section below, ‘IPCC’s ‘best-estimate’ is that of a warming of 0.2 °C per decade’, for more details). However, this reduction in warming was not high enough for the past 5 years to be cooler than the decade before that.

Lower climate sensitivity than expected

The IPCC – the scientific body that inventories all knowledge on climate change every 5 to 7 years –stated in 2007 in its fourth assessment report (AR4) that climate sensitivity was likely (i.e. with a likelihood of 66%) between 2.0 and 4.5 °C, with a ‘best estimate’ of 3 °C. The fifth assessment report (2013) stated a range of 1.5 to 4.5 °C without giving a ‘best estimate’. The reason for the downward adjustment of the lower limit to 1.5 °C (at which it had been estimated since 1990) originated from a number of studies that pointed to the possibility of a low climate sensitivity. The ‘best estimate’ was not provided “because of a lack of agreement on values across assessed lines of evidence and studies” (i.e. based on all studies up to and including July 2012). All this, however, does not mean that climate sensitivity was ‘less than expected’. In fact, the only thing that can be concluded is that the value of climate sensitivity has become more uncertain.

Further increase in greenhouse gas concentrations in the atmosphere

Greenhouse gas concentrations in the atmosphere have steadily increased over the past 5 years. By late 2014, CO2 concentrations were at 399 ppm (399 molecules of CO2 per million molecules of air). Five years ago this level was 388 ppm. The increase is a direct result from an ever faster increase in CO2 emissions, particularly in countries such as India and China.

IPCC’s ‘best-estimate’ is that of a warming of around 0.2 °C per decade

At the time of IPCC’s fourth assessment report, in 2007, a global warming of 0.2 °C was assumed for the current decade (2010–2019), particularly on the basis of climate model results. As discussed above, the degree of warming according to the UAH series, which is based on satellite measurements, was 0.1 °C over the last 5 years, compared to the mean of the 10 years before that. If this trend continues over the coming 5 years, our current decade will register a warming of around 0.15 °C – slightly less than the ‘best estimate’, but well within the projected range by the IPCC. However, all surface temperature series show a lower degree of warming, between 0.04 and 0.05 °C, over the past 5 years (see the section on ‘What causes the differences between the data series?’). Extrapolation over the 2010–2019 decade shows a total maximum warming of 0.08 °C [typo fixed]. This is in line with the discussion on the ´hiatus´ or the finding that the rate of warming over the past 15 years has been lower than in the 20 years before that, and also lower than the average outcome of many climate models. Note though that there is no significant change in trend from 1998. If climate model calculations take into account the ´random factors´ that cannot be predicted, such as the occurrence of El Niños, solar activity, and volcano eruptions, then models and observations seem much more in agreement.

The chances of overestimating climate sensitivity are smaller than those of underestimation

The IPPC’s fifth assessment report (2013) states that climate sensitivity is likely (66% probability) to be between 1.5 and 4.5 °C. It subsequently states that it is extremely unlikely (less than 5% probability) to be smaller than 1, and very unlikely (less than 10% probability) to be higher than 6.  In other words, very low values are less likely than very high values, which substantiates the above statement.

[Note: hyperlinks added by Bart Verheggen]

Open thread – Winter 2014/2015

December 3, 2014

For any climate related discussion – please be civil and minimize repeating yourself. It’s okay to agree to disagree.

Video-interview about climate science survey paper

September 26, 2014

Fellow Dutchman Collin Maessen interviewed me via skype about our recent paper “Scientists’ views about attribution of global warming“:

Collin wrote a blogpost about it as well which is well worth a read, giving a bit of context from other opinion and literature surveys.

The interview starts off with the general findings regarding the level of consensus, then focusing on how this compares with previous studies, how the media coverage is slanted towards contrarian views, and he gives me a chance to talk about my favorite part, how aerosol cooling masks the greenhouse warming and how this makes the phrasing of the IPCC AR4 attribution statement, by focusing only on the greenhouse warming part, prone to being misinterpreted. These aspects were also discussed in my blogpost from last month.

FAQ for the article “Scientists’ Views about Attribution of Global Warming”

August 11, 2014

published in Environmental Science and Technology (open access), DOI: 10.1021/es501998e, Supporting Information here.

A formal version of the FAQ is also available at the website of the PBL Netherlands Environmental Assessment Agency. A blog post with a brief description of the main conclusions is here.

 

General

1. What are the objectives of this survey?

The PBL aimed to characterize the spectrum of scientific opinion about physical climate science issues. The research was focused on issues that are a frequent topic of public debate, and explored questions such as:

  • On which issues is there widespread agreement amongst scientists?
  • On which issues do scientists hold varied opinions?
  • How does the spectrum of scientific opinion compare to IPCC assessments?
  • How do scientists view skeptical arguments and viewpoints?

2. What is the relevance of an opinion survey or of measurement of consensus in trying to assess the science?

Science is based on the critical evaluation of available evidence in the context of existing knowledge. It is not “just an opinion.” With this survey, we tried to identify how scientists assess the different viewpoints that exist in public discussions of climate science. If the evidence for a certain viewpoint has become sufficiently strong and stable over time, the scientists’ aggregated opinion could be expected to reflect that.

3. Are the survey results publicly available?

The full survey results are not publicly available, because the PBL intends to use the data for further analyses.
Update:
The ‘straight counts’ for every question (i.e. the number of responses for each answer option) will be made publicly available in the near future. This is not segregated in different sub-groups.

 

Conclusions

4. How does this study compare to the often-quoted 97% consensus?

Our results are consistent with similar studies, which all find high levels of consensus among scientists, especially among scientists who publish more often in the peer-reviewed climate literature.

Cook et al. (2013) found that 97% of papers that characterized the cause of recent warming indicated that it is due to human activities. (John Cook, the lead author of that analysis, is co-author on this current article.) Similarly, a randomized literature review found zero papers that called human-induced climate change into question (Oreskes, 2004).

Other studies surveyed scientists themselves. For instance, Doran and Kendall-Zimmermann (2009) found lower levels of consensus for a wider group of earth scientists (82% consensus) as compared to actively publishing climatologists (97% consensus) on the question of whether or not human activity is a “significant contributor” to climate change. Our results are also in line with those of e.g. Bray and von Storch (2008) and Lichter (2007).

In our study, among respondents with more than 10 peer-reviewed publications (half of total respondents), 90% agree that greenhouse gases are the largest – or tied for largest – contributor to recent warming. The level of agreement is ~85% for all respondents.

While these findings are consistent with other surveys, several factors could explain the slight differences we found:

  • Surveys like ours focus on opinions of individual scientists, whereas in a literature analyses the statements in individual abstracts are tallied. Literature analyses have generally found higher levels of consensus than opinion surveys, since the consensus is stronger amongst more heavily published scientists.
  • This study sets a more specific and arguably higher standard for what constitutes the consensus position than other studies. For instance, Doran and Kendall-Zimmermann (2009) asked about human activity being a “significant contributor” to global warming, and Anderegg et al. (2010) investigated signatories of public statements, while we asked specifically about the degree to which greenhouse gases are contributing to climate change in comparison with other potential factors.
  • Contrarian viewpoints are somewhat overrepresented in our survey and they may have overestimated their self-declared level of expertise (see question 9).

5. How is the consensus or agreement position defined?

The consensus position was defined in two ways:

  • Greenhouse gases contributed more than 50% to global warming since the mid-20th (Question 1). This is analogous to what was written in IPCC AR4.
  • Greenhouse gases have caused strong or moderate warming since pre-industrial times (Question 3). “Moderate” warming was only interpreted as the consensus position if no other factor was deemed to have caused “strong” warming. This response means that greenhouse gases were considered the strongest –or tied for strongest- contributor to global warming.

The former definition exactly mirrors the main attribution statement in IPCC AR4 and served as a ‘calibration’ for the latter.

6. What does “relative response” mean on the y-axis of many Figures?

This gives the percentage of the respondents (often within a certain sub-group) for the specific answer option. We opted to show the relative response rather than the absolute response to enable comparing the responses of different sub-groups (with differing group sizes as denoted by N=…) within one graph.

7. What are “undetermined” answers?

Those are the sum of responses “I don’t know”, “unknown” and “other”.

8. Why do IPCC AR4 authors show a higher consensus than the other respondents?

AR4 authors are generally domain experts, whereas the survey respondents at large comprise a very broad group of scholars, including for example scientists studying climate impacts or mitigation. Hence we consider this to be an extension of the observation -in this study and in e.g. Anderegg et al. (2010) and Doran and Kendall-Zimmermann (2009) – that the more expert scientists report stronger agreement with the IPCC position. Moreover, on the question of how likely the greenhouse contribution exceeded 50%, many respondents provided a stronger statement than was made in AR4. Using a smaller sample of scientists, Bray (2010) found no difference in level of consensus between IPCC authors and non-authors.

9. How reliable are the responses regarding the respondent’s area of expertise and number of peer-reviewed publications?

Respondents were tagged with expertise fields, though these were in many cases limited and not meant to be exhaustive. These tags were mainly used to ensure that the group of respondents was representative of the group that the survey was sent to. A subset of respondents was also tagged with a Google Scholar metric. Those who were tagged as “unconvinced” reported more expertise fields than the total group of respondents and also a higher number of publications compared to their Google Scholar metrics, if available (see Supplemental Information).

10. Since most scientists agree with the mainstream and therefore most media coverage is mainstream, what is the problem with “false balance”?

Scientists with dissenting opinions report receiving more media attention than those with mainstream opinions. This results in a skewed picture of the spectrum of scientific opinion. Whether that is problematic is in the eye of the beholder, but it may partly explain why public understanding lags behind scientific discourse (e.g. the “consensus gap”).

 

Survey Respondents

11. How many responses did you get to the survey?

Out of 6550 people contacted, 1868 filled out the survey (either in part or in full).

12. How did you compile the list of people to be surveyed?

Respondents were selected based on

  • keyword search in peer-reviewed publications (“global climate change” and “global warming”)
  • recent climate literature (various sources)
  • highly cited climate scientists (as listed by Jim Prall)
  • public criticisms of mainstream climate science (as listed by Jim Prall)

13. Are all of the survey invitees climate scientists?

The vast majority of invitees are scientists who published peer-reviewed articles about some aspect of climate change (this could be climate science, climate impacts, mitigation, etc.). Not all of them necessarily see themselves as climate scientists.

14. Why did you invite non-scientist skeptics to take part in the survey?

They were included in the survey to ensure that the main criticisms of climate science would be included. They constitute less then 5% of the survey respondents. Viewpoints that run counter to the prevailing consensus are therefore somewhat magnified in our results.

15. How representative are the survey responses of the “scientific opinion”?

It’s difficult to ascertain the extent to which our sample is representative, especially because the target group is heterogeneous and hard to define. We have chosen to survey the wider scientific field that works on climate change issues. Due to the criteria we used and the number of people invited we are confident that our results are indeed representative of this wider scientific field studying various aspects of global warming. We checked that those who responded to the survey were representative of the larger group of invitees by using various pieces of meta-information.

16. Did you take into account varying levels of expertise of respondents?

Respondent were asked to list their area(s) of expertise and their number of peer-reviewed publications. These and other attributes were used to interpret differences in responses.

17. How did you prevent respondents from manipulating the survey results, e.g. by answering multiple times?

An automatically generated, user specific token ensured that respondents could only respond once.

18. How did you ensure respondent anonymity?

Survey responses were analyzed by reference to a random identification number.

 

Survey Questions

19. Are the survey questions public?

Yes, survey questions and answer options are available on the PBL website and as Supporting Information (part 2) to the article.

20. How did you decide on the questions to ask?

The survey questions are related to physical science issues which are a frequent topic of public debate about climate change.

21. Was the survey reviewed before it was sent to respondents?

Yes, before executing the survey it has been extensively tested and commented on by various climate scientists, social scientists and science communicators with varying opinions, to ensure that questions were both clear and unbiased. Respondents were not steered to certain answers.

——-

Reference: Bart Verheggen, Bart Strengers, John Cook, Rob van Dorland, Kees Vringer, Jeroen Peters, Hans Visser, and Leo Meyer, Scientists’ Views about Attribution of Global Warming, Environmental Science and Technology, 2014. DOI: 10.1021/es501998e. Supporting Information available here.

Please keep discussions on this thread limited to what is mentioned in this FAQ and to other questions you may have about the survey or the article. Discussion of the survey results should be directed at the more generic blog post.

Survey confirms scientific consensus on human-caused global warming

August 11, 2014
  • A survey among more than 1800 climate scientists confirms that there is widespread agreement that global warming is predominantly caused by human greenhouse gases.
  • This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature.
  • The main attribution statement in IPCC AR4 may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols.
  • Self-reported media exposure is higher for those who are skeptical of a significant human influence on climate.

In 2012, while temporarily based at the Netherlands Environmental Assessment Agency (PBL), my colleagues and I conducted a detailed survey about climate science. More than 1800 international scientists studying various aspects of climate change, including e.g. climate physics, climate impacts and mitigation, responded to the questionnaire. The main results of the survey have now been published in Environmental Science and Technology (doi: 10.1021/es501998e).

Level of consensus regarding attribution

The answers to the survey showed a wide variety of opinions, but it was clear that a large majority of climate scientists agree that anthropogenic greenhouse gases are the dominant cause of global warming. Consistent with other research, we found that the consensus is strongest for scientists with more relevant expertise and for scientists with more peer-reviewed publications. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases (GHG) are the dominant driver of recent global warming. This is based on two different questions, of which one was phrased in similar terms as the quintessential attribution statement in IPCC AR4 (stating that more than half of the observed warming since the 1950s is very likely caused by GHG).

Verheggen et al - Figure 1 - GHG contribution to global warming


Figure 1. The more publications the respondents report to have written, the more important they consider the contribution of greenhouse gases to global warming. Responses are shown as a percentage of the number of respondents (N) in each subgroup, segregated according to self-reported number of peer-reviewed publications.

Literature analyses (e.g. Cook et al., 2013; Oreskes et al., 2004) generally find a stronger consensus than opinion surveys such as ours. This is related to the stronger consensus among highly published – and arguably the most expert – climate scientists. The strength of literature surveys lies in the fact that they sample the prime locus of scientific evidence and thus they provide the most direct measure of the consilience of evidence. On the other hand, opinion surveys such as ours can achieve much more specificity about what exactly is agreed upon and where the disagreement lies. As such, these two methods for quantifying scientific consensus are complementary. Our questions possibly set a higher bar for what’s considered the consensus position than some other studies. Furthermore, contrarian viewpoints were likely overrepresented in our study compared with others.

No matter how you slice it, scientists overwhelmingly agree that recent global warming is to a great extent human caused.

(more…)

Open thread Summer 2014

August 11, 2014

For all climate-related discussions that don’t fit under a recent thread.

ClimateDialogue on Climate Sensitivity

May 15, 2014

After a bit of a “hiatus”, ClimateDialogue (CD) has re-opened again with a discussion on climate sensitivity. On the one hand this site is unique in bringing together ‘mainstreamers’ and ‘contrarians’ (both in the organization and in the discussions), hopefully leading to both enhanced clarity on what the (dis)agreements are really about and to decreased polarization. On the other hand it’s controversial because a ‘false balance’ is embedded in its structure (by purposefully inviting contrarian scientists to the discussion, rather than e.g. randomly inviting experts).

Whether the positives or negatives dominate is in the eye of the beholder (opinions about that vary wildly), but also depends very strongly on the participation of the mainstream (both as invited experts and as contributing to the public discussion). See also my initial reflections at the time of the first launch. Discussions on ClimateDialogue will be facilitated and moderated by Bart Strengers (NL Environmental Assessment Agency, PBL) and Marcel Crok (freelance journalist), where the former has a mainstream view of climate science and the latter a contrarian view. I am still involved in the background, as is KNMI (NL Meteorological Institute). ClimateDialogue is funded by the Dutch Ministry of Infrastructure and Environment.

In the current ‘dialogue’ James Annan, John Fasullo and Nic Lewis are discussing their views about climate sensitivity (the equilibrium warming after a doubling of CO2 concentrations, ECS). In the latest IPCC report (AR5) the different and partly independent lines of evidence are combined to conclude that ECS is likely in the range 1.5°C to 4.5°C with high confidence. The figure below shows the ranges and best estimates of ECS in AR5 based on different types of studies, namely:

– the observed or instrumental surface, ocean and/or atmospheric temperature trends since pre-industrial time

– short-term perturbations of the energy balance such as those caused by volcanic eruptions, included under “instrumental” in the figure

– climatological constraints by comparing patterns of mean climate and variability in models to observations

– ECS as emergent property of global climate models

– temperature fluctuations as reconstructed from palaeoclimate archives

– studies that combine two or more lines of evidence

(more…)

John Christy, Richard McNider and Roy Spencer trying to overturn mainstream science by rewriting history and re-baselining graphs

February 22, 2014

Who are the Flat Earthers?

Before the advent of modern climatology, common wisdom had it that we tiny humans couldn’t possibly influence climate. Modern science shows we can. Yet John Christy and Richard McNider claim the exact opposite in a recent WSJ op-ed, in which they claim that their outdated views on climate somehow make them modern-day Galileo’s (or in their words: Why they are the ones declaring that the earth is round while the vast majority of the climate scientists persist in thinking the earth is flat). They couldn’t be more wrong.

Back then, scientific evidence slowly overturned the religious-cultural notion that the Earth was the centre of the universe. This resulted in a scientific consensus that the Earth revolves around the sun. More recently scientific evidence has started overturning the notion that humans can’t possibly influence something as gigantic as the Earth’s climate. This too has resulted in a scientific consensus  (though a public consensus is still lagging behind). In both cases, the pre-scientific notion was mostly culture-based, as opposed to being evidence-based.

As Jeff Nesbit tweeted: “Being the last scientist to accept established climate science doesn’t make you Galileo.” Quite the opposite indeed.

The Galileo-complex also suggests a rather simplistic view of how science progresses. Rather than a lone skeptic overthrowing a scientific (rather than a cultural) consensus, scientific progress is a usually a gradual process. New evidence has to be reconciled with the existing mountain of evidence; it doesn’t simply replace it. Observing a bird in the air doesn’t disprove gravity. “Skeptics” and their supporters often bring up Galileo as an example of that the scientific consensus can also be wrong, and has been wrong in the past. True enough, though as Carl Sagan said: “they laughed at Galileo, but they also laughed at Bozo the clown”.

Hot spot

Besides their entirely misplaced Galileo-framing, Christy and McNider also make a range of unsupported and/or incorrect statements. One argument deals with the so-called tropical tropospheric hot spot. This refers to the expected stronger warming of the tropical troposphere as compared to the surface. This “hot spot” is independent of the cause of the warming. But what do Christy and McNider write in the WSJ:

(the warming of the deep atmosphere is) the fundamental sign of carbon-dioxide-caused climate change, which is supposedly behind these natural phenomena

But hang on, didn’t Christy admit to the basic science that this hot spot is not specific to a greenhouse effect? Yes, he did (at the ClimateDialogue discussion in which he participated):

“Yes, the hot spot is expected via the traditional view that the lapse rate feedback operates on both short and long time scales. (…) it [the hot spot] is broader than just the enhanced greenhouse effect because any thermal forcing should elicit a response such as the “expected” hot spot.”

So why is he claiming something in the WSJ that he knows to be untrue?

Model-observation comparison

It almost goes without saying that any climate model-observation mismatch can have multiple (non-exclusive) causes (as succinctly summarized at RC):

  1. The observations are in error
  2. The models are in error
  3. The comparison is flawed

But rather than doing a careful analysis of various potential explanations, McNider and Christy, as well as their colleague Roy Spencer, prefer to draw far reaching conclusions based on a particularly flawed comparison: They shift the modelled temperature anomaly upwards to increase the discrepancy with observations by around 50%. Using this tactic, Roy Spencer showed the following figure on his blog recently:

Roy Spencer misleading figure - CMIP5-90-models-global-Tsfc-vs-obs-thru-2013

So what did he do? Jos Hagelaars tried to reproduce the different steps involved. A comparison of annual data, using a 1986-2005 baseline, would look as follows:

Jos Hagelaars - comparison_cmip5_hadcrut4_uah

Spencer used a 5 year running mean instead of annual values, which would (should) look as follows:

Jos Hagelaars - spencers-graph-reconstructed-part-1

The next step is re-baselining the figure to maximize the visual appearance of a discrepancy: Let’s baseline everything to the 1979-1983 average (way too short of a period and chosen very tactically it seems):

Jos Hagelaars - spencers-graph-reconstructed-part-2

Which looks surprisingly similar to Spencer’s trickery-graph. But critiquing Roy Spencer comes at a risk: He may call you a “global warming Nazi”. Those nasty CO2 molecules, that’ll teach them!

Many thanks to Jos Hagelaars for the data analysis and figures.

Is Climate Science falsifiable?

February 17, 2014

Guest post by Hans Custers. Nederlandse versie hier.

A very, ehhrmm… interesting piece on
Variable Variability, Victor Venema’s blog: Interesting what the interesting Judith Curry finds interesting. And I don’t mean interesting in a rhetoric, suggestive way; I mean it is a well-written and well-reasoned article, worth reading.

Victor writes about the meme regularly used by the anti climate science campaign, often supported by some straw man arguments, that the science of human impacts on climate would not be falsifiable. He shows it’s nonsense, by giving some examples of how it could be falsified. Or, more likely, already would have been falsified, if the science would be wrong. Victor’s post inspired me to think of more options to falsify generally accepted viewpoints in climate science. If there are any ‘climate change skeptics’ who want to contribute to real science, they might see this as a challenge. Maybe they can come up with a research proposal, based on one of the options for falsification. Like proper scientists would do.

First, a few more things about falsifiability in general. Bart wrote a concise post about the subject four years ago, explaining that a bird in the sky does not disprove gravity. What looks like a refutation at first, might on second thoughts be based on partial or total misunderstanding of the hypothesis. Natural climate forcings and variations do not exclude human impacts. Therefore, the existence of these natural factors in itself, cannot falsify anthropogenic climate change. A real skeptic is cautious about both scientific evidence and refutations. ‘Climate change skeptics’ like to mention the single black swan, that disproves the hypothesis that all swans are white. Of course that is true, unless that single black swan appears to be found near some oil spill.

Some of the falsifications that I mention later on might be somewhat cheap, or far-fetched. It is not very easy to find options to falsify the science of human impacts on climate. Not because climate scientists don’t respect philosophical principles of science, but simply because there’s such a huge amount of evidence. There are not a lot of findings that would disprove all the evidence at once. A scientific revolution of this magnitude only happens very rarely. Whoever thinks differently, doesn’t understand how science works. (more…)


Follow

Get every new post delivered to your Inbox.

Join 136 other followers