A new reconstruction of global average temperature over the past two million years has recently appeared in Nature (Snyder, 2016). That is quite a feat and a first for this duration. The figure below, made by Jos Hagelaars, shows Snyder’s temperature reconstruction, combined with the observed warming since 1880 and projected warming until the year 3000 for two IPCC scenarios, RCP6.0 and RCP8.5.
The RCP8.5 can be viewed as a “no mitigation” scenario, whereas RCP6.0 would be a “limited mitigation” scenario. It is clear that in both scenarios global warming over the next centuries will take us out of the temperature realm of the past two million years. A similar figure (which I tweeted yesterday) but then with temperature projections stopping in the year 2100 can be found here.
Even though lauded as a very valuable and novel contribution to the field, Snyder’s reconstruction has also been criticized because the temperature amplitude between glacial and interglacial states appears relatively large (~6 degrees) compared to other recent reconstructions, e.g. by Shakun et al (2012) (~4 degrees). Somewhat related, Snyder estimates the global average temperature during the previous interglacial (Eemian) to be warmer than now, whereas e.g. Hansen et al (2016, under review) argue that they are similarly warm. By the way, sea levels were 6 to 9 metres higher in the Eemian than now. Sea level responds very slowly to a change in temperature, yet another sign of the vast inertia in the climate system.
Somewhat overshadowing the actual temperature reconstruction that Snyder presented was her calculation of an earth system sensitivity (ESS) based on a correlation between temperature and CO2 over the past few glacial cycles. The earth system sensitivity denotes the long-term temperature response to a doubling in CO2 concentrations, including e.g. the response of ice sheets (which is typically excluded from the more often used equilibrium climate sensitivity, ECS). She then applied the ESS value of a whopping 9 degrees, obtained from this simple correlation, to the current warming, stating in the abstract:
This result suggests that stabilization at today’s greenhouse gas levels may already commit Earth to an eventual total warming of 5 degrees Celsius (range 3 to 7 degrees Celsius, 95 per cent credible interval) over the next few millennia as ice sheets, vegetation and atmospheric dust continue to respond to global warming.
Where “commit” means that this level of warming would be eventually expected based on current CO2 concentrations.
As Gavin Schmidt wrote, this is simply wrong.
The reason why I think it’s wrong is that in her calculation of ESS she takes the radiative forcing caused by albedo changes (resulting from the massive change in ice coverage between a glacial and interglacial state) and assumes it to be a feedback on the CO2 induced temperature-change.
There are two issues with this:
1) In reality both the changes in albedo (reflectivity) and CO2 concentration are feedbacks on the orbital forcing, and the relation in the one direction (a change in earth’s orbit causing a temperature change which in turn causes albedo and CO2 levels to change) is not necessarily the same as the relation in the reverse direction, as is currently happening with human-induced increases in CO2. Gavin Schmidt makes this point in two consecutive posts at RealClimate (here and here), though you might also want to read Hansen’s take, who has used a similar approach as Snyder did).
2) The ESS value obtained would (ignoring the more complex first point) perhaps be applicable to a glacial-interglacial transition, but decidedly not to an interglacial-‘hyperinterglacial’ transition, where the ice-albedo feedback would of course be much smaller because of the much smaller ice-covered surface area.
This second point was also made by James Annan in response to Hansen’s 2008 Target CO2 paper, where he essentially used the same method as Snyder is using (but came to a smaller ESS value of 6 degrees, because Snyder uses a greater temperature-amplitude between glacial-interglacial). Hansen noted in his paper though that “The 6°C sensitivity reduces to 3°C when the planet has become warm enough to lose its ice sheets.”
In other words, using Snyder’s very (and probably too) high ESS value to project future warming is unwarranted and wrong.